In vitro regeneration of soybean (a review)
https://doi.org/10.30901/2227-8834-2021-4-148-155
Abstract
This is an overview of contemporary published works dedicated to the ability of soybean plants to regenerate in vitro and the techniques to achieve high regeneration rates, which is a necessary condition for the inclusion of soybean genotypes in genome editing programs. The main factors that determine the regenerative capacity of explants from various soybean accessions are considered. The greatest effect on the efficiency of regeneration is exerted by the conditions of in vitro culture initiation, type of explant, composition of the nutrient medium, shelf life of seeds, and genotypic characteristics of soybean accessions.
About the Authors
E. S. BespalovaRussian Federation
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000
K. M. Ershova
Russian Federation
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000
Yu. V. Ukhatova
Russian Federation
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000
References
1. Abugalieva S. Genetic diversity of soybean (Glycine max (L.) Merrill). Biotechnology. Theory and practice. 2013;(4):13-19. [in Russian]
2. Abugalieva S.I., Volkova L.A., Zhidovinova A.V., Ledovskoy Yu.S., Turuspekov E.K. Genotyping of soybean varieties in Kazakhstan using ISSR markers. Bulletin of Kazakh National University. Experimental Biology. 2010;(3)8-11. [in Russian].
3. Aslam M.M., Karanja J.K., Zhang Q., Lin H., Xia T., Akhtar K. et al. In vitro regeneration potential of white lupin (Lupinus albus) from cotyledonary nodes. Plants. 2020;9(3):318. DOI: 10.3390/plants9030318
4. Bakulina A.V., Shirokikh I.G. Increasing of barley productivity and adaptability by using genetic modification technologies. Agricultural Science Euro-North-East. 2019;20(1):5-19. [in Russian]. DOI: 10.30766/2072-9081.20.1.05-19
5. Bragina V.V., Kocheva N.S. Study of cultural practices of new soybean varieties under the conditions of the Primorsky region. Bulletin of Altai State Agricultural University. 2017;8(154):33-38. [in Russian].
6. Ceasar S.A., Rajan V., Prykhozhij S.V., Berman J.N., Ignacimuthu S. Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. Biochimica et Biophysica Acta. 2016;1863(9):2333-2344. DOI: 10.1016/j.bbamcr.2016.06.009
7. Chylinski K., Makarova K.S, Charpentier E., Koonin E.V. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Research. 2014;42(10):6091-6105. DOI: 10.1093/nar/gku241
8. Efremova O.S., Shkryl Yu.N., Veremeichik G.N. Regeneration potential in vitro of soybean varieties in agrobacterial transformation. Agrarny vestnik Primorya = Agrarian Bulletin of Primorye. 2017;4(8):21-23. [in Russian].
9. Feng C., Hou A., Chen P., Cornelious B., Shi A., Zhang B. Genetic diversity among popular historical southern U.S. soybean cultivars using AFLP markers. Journal of Crop Improvement. 2008;22(1):31-46. DOI: 10.1080/15427520802042879
10. Gasiunas G., Siksnys V. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends in Microbiology. 2013;21(11):562-567. DOI: 10.1016/j.tim.2013.09.001
11. Glazko V.Yu., Dubin A.V., Calendar R.N., Glazko G.V., She repitko V.I., Sozinov A.A. Genetic relationships between soybean varieties assessed using ISSR markers. Cytology and Genetics. 1999;33(5):47-51. [in Russian].
12. Kantayos V., Bae C.H. Optimization of shoot Induction, Histological study and genetic stability of in vitro cultured Pisum sativum cv. ‘Sparkle’. Korean Journal of Plant Resources. 2019a;32(1):19-28. DOI: 10.7732/kjpr.2019.32.1.019
13. Kantayos V., Bae C.H. Optimized shoot induction and histological study of in vitro cultured Korean soybean cultivars. Korean Journal of Plant Resources. 2019b;32(3):237-243. DOI: 10.7732/kjpr.2019.32.3.237
14. Korotkova A.M., Gerasimova S.V., Khlestkina E.K. Current achievements in modifying crop genes using CRISPR/ Cas system. Vavilov Journal of Genetics and Breeding. 2019;23(1):29-37. DOI: 10.18699/VJ19.458
15. Korotkova A.M., Gerasimova S.V., Shumny V.K., Khlestkina E.K. Crop genes modified using CRISPR/CAS system. Vavilov Journal of Genetics and Breeding. 2017;21(2):250-258. [in Russian]. DOI: 10.18699/VJ17.244
16. Kozyrenko M.M., Fisenko P.P., Artyukova E.V. Analysis of genetic diversity of soybean (Glycine max (L.) Merr.) cultivars and somaclonal lines be marking of inter-simple sequence repeats. Biotechnology. 2007;(1):1-15.
17. Leenay R.T., Beisel C.L. Deciphering, communicating, and engineering the CRISPR PAM. Journal of Molecular Biology. 2017;429(2):177-191. DOI: 10.1016/j.jmb.2016.11.024
18. Lomov N., Borunova V., Rubtsov M.A. CRISPR/Cas9 technolo gy for targeted genome editing. Biopolymers and Cell. 2015;31(4):243-248. DOI: 10.7124/bc.0008E7
19. Luo M.L., Leenay R.T., Beisel C.L. Current and future prospects for CRISPR-based tools in bacteria. Biotechnology and Bioengineering. 2016;113(5):930-943. DOI: 10.1002/bit.25851
20. Lysenko Y. TOP-10 soybean producers in the world in 2019 (TOP-10 proizvodieley soyi v mire v 2019 godu. Latifundist.com. 2020). [in Russian]. URL: https://latifundist.com/rating/top-10-proizvoditelej-soi-v-mire-v-2019-godu [дата обращения: 19.01.2021].
21. Nemudryi A.A., Valetdinova K.R., Medvedev S.P., Zakian S.M. TALEN and CRISPR/Cas genome editing systems – tools of discovery. Acta Naturae. 2014;6(3):19-40. DOI: 10.32607/20758251-2014-6-3-19-40
22. Novikova L.Yu., Seferova I.V., Nekrasov A.Yu., Perchuk I.N., Shelenga T.V., Samsonova M.G. et al. Impact of weather and climate on seed protein and oil content of soybean in the North Caucasus. Vavilov Journal of Genetics and Breeding. 2018;22(6):708-715. [in Russian]. DOI: 10.18699/VJ18.414
23. Makarova K.S., Wolf Y.I., Alkhnbashi O.S., Costa F., Shah S.A., Saunders S.J. et al. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews. Microbiology. 2015;13(11):722-736. DOI: 10.1038/nrmicro3569
24. Mangena P. Benzyl adenine in plant tissue culture-succinct analysis of the overall influence in soybean [Glycine max (L.) Merrill] seed and shoot culture establishment. Journal of Biotech Research. 2020;11(1):23-34.
25. Mangena P., Mokwala P.W. The influence of seed viability on the germination and in vitro multiple shoot regeneration of soybean (Glycine max L.). Agriculture. 2019;9(2):35. DOI: 10.3390/agriculture9020035
26. Marchisio M.A., Huang Z. CRISPR-Cas type II-based synthetic biology applications in eukaryotic cells. RNA Biology. 2017;14(10):1286-1293. DOI: 10.1080/15476286.2017.1282024
27. Mora Vasquez S., García-Lara S., Cardineau G.A. Phenotypic traits of Mexican soybean seeds and their correlation with in vitro shoot induction and susceptibility to Agrobacterium infection. Acta Botanica Mexicana. 2019;126:e1421:1-12. DOI: 10.21829/abm126.2019.1421
28. Mudibu J., Nkongolo K.K.C., Mehes-Smith M., Kalonji-Mbuyi A. Genetic analysis of a soybean genetic pool using ISSR marker: Effect of gamma radiation on genetic variability. International Journal of Plant Breeding and Genetics. 2011;5(3):235-245. DOI: 10.3923/ijpbg.2011.235.245
29. Murashige T., Skoog F.A. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum. 1962;15(3):473-497. DOI: 10.1111/j.1399-3054.1962.tb08052.x
30. Raza G., Singh M.B., Bhalla P.L. In vitro plant regeneration from commercial cultivars of soybean. BioMed Research International. 2017;2017:7379693. DOI: 10.1155/ 2017/7379693
31. Raza G., Singh M.B., Bhalla P.L. Somatic embryogenesis and plant regeneration from commercial soybean cultivars, Plants. 2020;9(1):38. DOI: 10.3390/plants9010038
32. Sainger M., Chaudhary D., Dahiya S., Jaiwal R., Jaiwal P.K. Development of an efficient in vitro plant regeneration system amenable to Agrobacterium-mediated transformation of a recalcitrant grain legume blackgram (Vigna mungo L. Hepper). Physiology and Molecular Biology of Plants. 2015;21(4):505-517. DOI: 10.1007/s12298-015-0315-1
33. Salina E.A. Genome modeling and editing technologies for solving the breeding challenges. Achievements of Science and Technology of AIC. 2016;30(9):9-14. [in Russian].
34. Schmutz J., Cannon S.B., Schlueter J., Ma J., Mitros T., Nelson W. et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463(7278):178-183. DOI: 10.1038/nature08670
35. Seferova I.V., Novikova L.Yu. Climatic factors affecting the development of early soybean accessions in the environments of the Russian Northwest. Proceedings on Applied Botany, Genetics and Breeding. 2015;176(1):88-97. [in Russian]. DOI: 10.30901/2227-8834-2015-1-88-97
36. Seferova I.V., Vishnyakova M.A. Soybean gene pool from VIR collection for the promotion of agronomical area of the crop to the north. Legumes and Groat Crops. 2018;3(27):41-47. [in Russian]. DOI: 10.24411/2309-348X-2018-11030
37. Shmakov S., Smargon A., Scott D., Cox D., Pyzocha N., Yan W. et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews. Microbiology. 2017;15(3):169-182. DOI: 10.1038/nrmicro.2016.184
38. Sojková J., Žur I., Gregorová Z., Zimová M., Matusikova I., Mihálik D. et al. In vitro regeneration potential of seven commercial soybean cultivars (Glycine max L.) for use in biotechnology, Nova Biotechnologica et Chimica. 2016;15(1):1-11. DOI: 10.1515/nbec-2016-0001
39. Soto N., Ferreira A., Delgado C., Enriquez G.A. In vitro regeneration of soybean plants of the Cuban Incasoy-36 variety. Biotecnología Aplicada. 2013;30(1):29-38.
40. Strygina K.V., Khlestkina E.K. Wheat, barley and maize genes editing using the CRISPR/Cas system. Biotechnology and Plant Breeding. 2020;3(1):46-56. [in Russian]. DOI: 10.30901/2658-6266-2020-1-o2
41. Tikhonova N.G., Khlestkina E.K. Genetic editing for improvement of fruit and small fruit crops. Horticulture and viticulture. 2019;(4):10-15. [in Russian]. DOI: 10.31676/0235-2591-2019-4-10-15
42. Tolmacheva A.V. Influence of agrometerological conditions on the growth of soybean culture. Bulletin of Odessa State Environmental University. 2013;(15):89-94. [in Russian].
43. Varlamova N.V., Rodionova M.A., Efremova L.N., Kharchen ko P.N., Vysotskii D.A., Khaliluev M.R. Indirect shoot organogenesis of soybean Glycine max (L.) Merr. from stem segments and use of the explants for Agrobacterium-mediated transformation. Agricultural Biology. 2018;53(3):521-530. [in Russian]. DOI: 10.15389/agrobiology.2018.3.521rus
44. Vinichenko N.A., Salina E.A., Kochetov A.V. The scope of use of molecular markers in soybean breeding. Letters to Vavilov Journal of Genetics and Breeding. 2020;6(3):107-125. DOI: 10.18699/Letters2020-6-15
45. Vlasov V.V., Medvedev S.P., Zakian S.M. “Editors” of genomes from “zinc fingers” to CRISPR (“Redaktory” genomov ot “tsinkovykh paltsev” do CRISPR). Science First Hand. 2014;2(56):44-53. [in Russian].
46. Xu D.H., Abe J., Gai J.Y., Shimamoto Y. Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: Evidence for multiple origins of cultivated soybean. Theoretical and Applied Genetics. 2002;105:645-653. DOI: 10.1007/s00122-002-0972-7
47. Xu D.H., Gai J.Y. Genetic diversity of wild and cultivated soybeans growing in China revealed by RAPD analysis. Plant Breeding. 2003;122(6):503-506. DOI: 10.1046/j.0179-9541.2003.00911.x
48. Zhumagulova Zh.B. Improvement of biotechnological methods for preserving the pear gene pool (Sovershenstvovaniye biotekhnologicheskikh metodov sokhraneniya genofonda grushi) [dissertation]: Almaty: Kazakh National Agrarian University; 2014. [in Russian]. URL: https://www.kaznaru.edu.kz/page/dissovet/dissovet_2014/disserzhumagulova.pdf [дата обращения: 26.02.2021].
Review
For citations:
Bespalova E.S., Ershova K.M., Ukhatova Yu.V. In vitro regeneration of soybean (a review). Proceedings on applied botany, genetics and breeding. 2021;182(4):148-155. (In Russ.) https://doi.org/10.30901/2227-8834-2021-4-148-155